Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Loading...
Loading
Contract Name:
GelatoRelay1BalanceConcurrentERC2771
Compiler Version
v0.8.20+commit.a1b79de6
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import { IGelatoRelay1BalanceConcurrentERC2771 } from "./interfaces/IGelatoRelay1BalanceConcurrentERC2771.sol"; import {IGelato1Balance} from "./interfaces/IGelato1Balance.sol"; import { GelatoRelay1BalanceConcurrentERC2771Base } from "./abstract/GelatoRelay1BalanceConcurrentERC2771Base.sol"; import {GelatoCallUtils} from "./lib/GelatoCallUtils.sol"; import {GelatoTokenUtils} from "./lib/GelatoTokenUtils.sol"; import {CallWithConcurrentERC2771} from "./types/CallTypes.sol"; import { _encodeERC2771Context } from "@gelatonetwork/relay-context/contracts/functions/GelatoRelayUtils.sol"; /// @title Gelato Relay contract /// @notice This contract deals with synchronous payments and Gelato 1Balance payments /// @dev This contract must NEVER hold funds! /// @dev Maliciously crafted transaction payloads could wipe out any funds left here // solhint-disable-next-line max-states-count contract GelatoRelay1BalanceConcurrentERC2771 is IGelatoRelay1BalanceConcurrentERC2771, IGelato1Balance, GelatoRelay1BalanceConcurrentERC2771Base { using GelatoCallUtils for address; using GelatoTokenUtils for address; //solhint-disable-next-line const-name-snakecase string public constant name = "GelatoRelay1BalanceConcurrentERC2771"; //solhint-disable-next-line const-name-snakecase string public constant version = "1"; // solhint-disable no-empty-blocks constructor( address _gelato ) GelatoRelay1BalanceConcurrentERC2771Base(_gelato) {} /// @notice Relay call + One Balance payment with _msgSender user signature verification /// @dev Payment is handled with off-chain accounting using Gelato's 1Balance system /// @param _call Relay call data packed into CallWithConcurrentERC2771 struct /// @param _userSignature EIP-712 compliant signature from _call.user /// @param _nativeToFeeTokenXRateNumerator Exchange rate numerator /// @param _nativeToFeeTokenXRateDenominator Exchange rate denominator /// @param _correlationId Unique task identifier generated by gelato // solhint-disable-next-line function-max-lines function sponsoredCallConcurrentERC2771( CallWithConcurrentERC2771 calldata _call, address _sponsor, address _feeToken, uint256 _oneBalanceChainId, bytes calldata _userSignature, uint256 _nativeToFeeTokenXRateNumerator, uint256 _nativeToFeeTokenXRateDenominator, bytes32 _correlationId ) external onlyGelato { // CHECKS _requireChainId( _call.chainId, "GelatoRelay1BalanceConcurrentERC2771.sponsoredCallConcurrentERC2771:" ); _requireUserDeadline( _call.userDeadline, "GelatoRelay1BalanceConcurrentERC2771.sponsoredCallConcurrentERC2771:" ); bytes32 callHash = _hashSponsoredCallConcurrentERC2771(_call); // For the user, we enforce hash-based replay protection _requireUnusedHash( callHash, "GelatoRelay1BalanceConcurrentERC2771.sponsoredCallConcurrentERC2771:" ); bytes32 domainSeparator = _getDomainSeparator(); // Verify user's signature _requireSponsoredCallConcurrentERC2771Signature( domainSeparator, callHash, _userSignature, _call.user ); // EFFECTS hashUsed[callHash] = true; // INTERACTIONS _call.target.revertingContractCall( _encodeERC2771Context(_call.data, _call.user), "GelatoRelay1BalanceConcurrentERC2771.sponsoredCallConcurrentERC2771:" ); emit LogUseGelato1Balance( _sponsor, _call.target, _feeToken, _oneBalanceChainId, _nativeToFeeTokenXRateNumerator, _nativeToFeeTokenXRateDenominator, _correlationId ); } //solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _getDomainSeparator(); } function _getDomainSeparator() internal view returns (bytes32) { return keccak256( abi.encode( keccak256( bytes( //solhint-disable-next-line max-line-length "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ) ), keccak256(bytes(name)), keccak256(bytes(version)), block.chainid, address(this) ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.1; // Four different types of calldata packing // 1. encodeFeeCollector: append 20 byte feeCollector address // 2. encodeRelayContext: append 20 byte feeCollector address, 20 byte feeToken address, 32 byte uint256 fee // 3. encodeFeeCollectorERC2771: append 20 byte feeCollector address, 20 byte _msgSender address // 4. encodeRelayContextERC2771: append 20 byte feeCollector address, 20 byte feeToken address, 32 byte uint256 fee, 20 byte _msgSender address function _encodeFeeCollector(bytes calldata _data, address _feeCollector) pure returns (bytes memory) { return abi.encodePacked(_data, _feeCollector); } function _encodeRelayContext( bytes calldata _data, address _feeCollector, address _feeToken, uint256 _fee ) pure returns (bytes memory) { return abi.encodePacked(_data, _feeCollector, _feeToken, _fee); } // ERC2771 Encodings // vanilla ERC2771 context encoding // solhint-disable-next-line private-vars-leading-underscore, func-visibility function _encodeERC2771Context(bytes calldata _data, address _msgSender) pure returns (bytes memory) { return abi.encodePacked(_data, _msgSender); } function _encodeFeeCollectorERC2771( bytes calldata _data, address _feeCollector, address _msgSender ) pure returns (bytes memory) { return abi.encodePacked(_data, _feeCollector, _msgSender); } function _encodeRelayContextERC2771( bytes calldata _data, address _feeCollector, address _feeToken, uint256 _fee, address _msgSender ) pure returns (bytes memory) { return abi.encodePacked(_data, _feeCollector, _feeToken, _fee, _msgSender); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import { IGelatoRelay1BalanceConcurrentERC2771Base } from "../interfaces/IGelatoRelay1BalanceConcurrentERC2771Base.sol"; import {GelatoString} from "../lib/GelatoString.sol"; import {CallWithConcurrentERC2771} from "../types/CallTypes.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; abstract contract GelatoRelay1BalanceConcurrentERC2771Base is IGelatoRelay1BalanceConcurrentERC2771Base { using GelatoString for string; // solhint-disable-next-line named-parameters-mapping mapping(bytes32 => bool) public hashUsed; address public immutable gelato; bytes32 public constant SPONSORED_CALL_CONCURRENT_ERC2771_TYPEHASH = keccak256( bytes( // solhint-disable-next-line max-line-length "SponsoredCallConcurrentERC2771(uint256 chainId,address target,bytes data,address user,bytes32 userSalt,uint256 userDeadline)" ) ); modifier onlyGelato() { require(msg.sender == gelato, "Only callable by gelato"); _; } constructor(address _gelato) { gelato = _gelato; } function _requireChainId( uint256 _chainId, string memory _errorTrace ) internal view { require(_chainId == block.chainid, _errorTrace.suffix("chainid")); } function _requireUserDeadline( uint256 _userDeadline, string memory _errorTrace ) internal view { require( // solhint-disable-next-line not-rely-on-time _userDeadline == 0 || _userDeadline >= block.timestamp, _errorTrace.suffix("deadline") ); } function _requireUnusedHash( bytes32 _callWithSyncFeeConcurrentHash, string memory _errorTrace ) internal view { require( !hashUsed[_callWithSyncFeeConcurrentHash], _errorTrace.suffix("replay") ); } function _requireSponsoredCallConcurrentERC2771Signature( bytes32 _domainSeparator, bytes32 _sponsoredCallConcurrentHash, bytes calldata _signature, address _expectedSigner ) internal pure returns (bytes32 digest) { digest = keccak256( abi.encodePacked( "\x19\x01", _domainSeparator, _sponsoredCallConcurrentHash ) ); (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover( digest, _signature ); // solhint-disable-next-line reason-string require( error == ECDSA.RecoverError.NoError && recovered == _expectedSigner, // solhint-disable-next-line max-line-length "GelatoRelay1BalanceConcurrentERC2771Base._requireSponsoredCallConcurrentERC2771Signature" ); } function _hashSponsoredCallConcurrentERC2771( CallWithConcurrentERC2771 calldata _call ) internal pure returns (bytes32) { return keccak256( abi.encode( SPONSORED_CALL_CONCURRENT_ERC2771_TYPEHASH, _call.chainId, _call.target, keccak256(_call.data), _call.user, _call.userSalt, _call.userDeadline ) ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; address constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IGelato1Balance { event LogUseGelato1Balance( address indexed sponsor, address indexed target, address indexed feeToken, uint256 oneBalanceChainId, uint256 nativeToFeeTokenXRateNumerator, uint256 nativeToFeeTokenXRateDenominator, bytes32 correlationId ); event LogUseGelato1BalanceV2(bytes32 correlationId, bytes checkerSignature); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import {CallWithConcurrentERC2771} from "../types/CallTypes.sol"; interface IGelatoRelay1BalanceConcurrentERC2771 { function sponsoredCallConcurrentERC2771( CallWithConcurrentERC2771 calldata _call, address _sponsor, address _feeToken, uint256 _oneBalanceChainId, bytes calldata _userSignature, uint256 _nativeToFeeTokenXRateNumerator, uint256 _nativeToFeeTokenXRateDenominator, bytes32 _correlationId ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; // solhint-disable func-name-mixedcase interface IGelatoRelay1BalanceConcurrentERC2771Base { function hashUsed(bytes32 _hash) external view returns (bool); function gelato() external view returns (address); function SPONSORED_CALL_CONCURRENT_ERC2771_TYPEHASH() external pure returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; library GelatoBytes { function calldataSliceSelector( bytes calldata _bytes ) internal pure returns (bytes4 selector) { selector = _bytes[0] | (bytes4(_bytes[1]) >> 8) | (bytes4(_bytes[2]) >> 16) | (bytes4(_bytes[3]) >> 24); } function memorySliceSelector( bytes memory _bytes ) internal pure returns (bytes4 selector) { selector = _bytes[0] | (bytes4(_bytes[1]) >> 8) | (bytes4(_bytes[2]) >> 16) | (bytes4(_bytes[3]) >> 24); } function revertWithError( bytes memory _bytes, string memory _tracingInfo ) internal pure { // 68: 32-location, 32-length, 4-ErrorSelector, UTF-8 err if (_bytes.length % 32 == 4) { bytes4 selector; assembly { selector := mload(add(0x20, _bytes)) } if (selector == 0x08c379a0) { // Function selector for Error(string) assembly { _bytes := add(_bytes, 68) } revert(string(abi.encodePacked(_tracingInfo, string(_bytes)))); } else { revert( string(abi.encodePacked(_tracingInfo, "NoErrorSelector")) ); } } else { revert( string(abi.encodePacked(_tracingInfo, "UnexpectedReturndata")) ); } } function returnError( bytes memory _bytes, string memory _tracingInfo ) internal pure returns (string memory) { // 68: 32-location, 32-length, 4-ErrorSelector, UTF-8 err if (_bytes.length % 32 == 4) { bytes4 selector; assembly { selector := mload(add(0x20, _bytes)) } if (selector == 0x08c379a0) { // Function selector for Error(string) assembly { _bytes := add(_bytes, 68) } return string(abi.encodePacked(_tracingInfo, string(_bytes))); } else { return string(abi.encodePacked(_tracingInfo, "NoErrorSelector")); } } else { return string(abi.encodePacked(_tracingInfo, "UnexpectedReturndata")); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import {GelatoBytes} from "./GelatoBytes.sol"; library GelatoCallUtils { using GelatoBytes for bytes; function revertingContractCall( address _contract, bytes memory _data, string memory _errorMsg ) internal returns (bytes memory returndata) { bool success; (success, returndata) = _contract.call(_data); // solhint-disable-next-line max-line-length // https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/f9b6fc3fdab7aca33a9cfa8837c5cd7f67e176be/contracts/utils/AddressUpgradeable.sol#L177 if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require( isContract(_contract), string(abi.encodePacked(_errorMsg, "Call to non contract")) ); } } else { returndata.revertWithError(_errorMsg); } } // solhint-disable-next-line max-line-length // https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/f9b6fc3fdab7aca33a9cfa8837c5cd7f67e176be/contracts/utils/AddressUpgradeable.sol#L36 function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; library GelatoString { function revertWithInfo( string memory _error, string memory _tracingInfo ) internal pure { revert(string(abi.encodePacked(_tracingInfo, _error))); } function prefix( string memory _second, string memory _first ) internal pure returns (string memory) { return string(abi.encodePacked(_first, _second)); } function suffix( string memory _first, string memory _second ) internal pure returns (string memory) { return string(abi.encodePacked(_first, _second)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import {NATIVE_TOKEN} from "../constants/Tokens.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; library GelatoTokenUtils { function transfer(address _token, address _to, uint256 _amount) internal { _token == NATIVE_TOKEN ? Address.sendValue(payable(_to), _amount) : SafeERC20.safeTransfer(IERC20(_token), _to, _amount); } function getBalance( address token, address user ) internal view returns (uint256) { return token == NATIVE_TOKEN ? user.balance : IERC20(token).balanceOf(user); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; // Sponsored relay call struct SponsoredCall { uint256 chainId; address target; bytes data; } // Sponsored relay call without chainId struct SponsoredCallV2 { address target; bytes data; } // Relay call with user signature verification for ERC 2771 compliance struct CallWithERC2771 { uint256 chainId; address target; bytes data; address user; uint256 userNonce; uint256 userDeadline; } // Concurrent relay call with user signature verification for ERC 2771 compliance struct CallWithConcurrentERC2771 { uint256 chainId; address target; bytes data; address user; bytes32 userSalt; uint256 userDeadline; } struct RelayContext { address feeToken; uint256 fee; }
{ "evmVersion": "paris", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 999999 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_gelato","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sponsor","type":"address"},{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":true,"internalType":"address","name":"feeToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"oneBalanceChainId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nativeToFeeTokenXRateNumerator","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nativeToFeeTokenXRateDenominator","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"correlationId","type":"bytes32"}],"name":"LogUseGelato1Balance","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"correlationId","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"checkerSignature","type":"bytes"}],"name":"LogUseGelato1BalanceV2","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SPONSORED_CALL_CONCURRENT_ERC2771_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gelato","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"hashUsed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"address","name":"user","type":"address"},{"internalType":"bytes32","name":"userSalt","type":"bytes32"},{"internalType":"uint256","name":"userDeadline","type":"uint256"}],"internalType":"struct CallWithConcurrentERC2771","name":"_call","type":"tuple"},{"internalType":"address","name":"_sponsor","type":"address"},{"internalType":"address","name":"_feeToken","type":"address"},{"internalType":"uint256","name":"_oneBalanceChainId","type":"uint256"},{"internalType":"bytes","name":"_userSignature","type":"bytes"},{"internalType":"uint256","name":"_nativeToFeeTokenXRateNumerator","type":"uint256"},{"internalType":"uint256","name":"_nativeToFeeTokenXRateDenominator","type":"uint256"},{"internalType":"bytes32","name":"_correlationId","type":"bytes32"}],"name":"sponsoredCallConcurrentERC2771","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60a060405234801561001057600080fd5b5060405161126a38038061126a83398101604081905261002f91610040565b6001600160a01b0316608052610070565b60006020828403121561005257600080fd5b81516001600160a01b038116811461006957600080fd5b9392505050565b6080516111d86100926000396000818161012a01526101f401526111d86000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c806354fd4d501161005b57806354fd4d50146100e9578063573ea5751461012557806390b15b0014610171578063b567146d1461017957600080fd5b806306fdde03146100825780633644e515146100a0578063533e62b6146100b6575b600080fd5b61008a61018e565b6040516100979190610cab565b60405180910390f35b6100a86101aa565b604051908152602001610097565b6100d96100c4366004610cfc565b60006020819052908152604090205460ff1681565b6040519015158152602001610097565b61008a6040518060400160405280600181526020017f310000000000000000000000000000000000000000000000000000000000000081525081565b61014c7f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610097565b6100a86101b9565b61018c610187366004610d3e565b6101dc565b005b60405180606001604052806024815260200161106d6024913981565b60006101b461046e565b905090565b6040518060a00160405280607c8152602001611091607c91398051906020012081565b3373ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001614610280576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f4f6e6c792063616c6c61626c652062792067656c61746f00000000000000000060448201526064015b60405180910390fd5b6102a6896000013560405180608001604052806044815260200161115f60449139610543565b6102cc8960a0013560405180608001604052806044815260200161115f604491396105cb565b60006102d78a610617565b90506102fb8160405180608001604052806044815260200161115f604491396106f7565b600061030561046e565b9050610326818389898f60600160208101906103219190610e24565b61074c565b506000828152602081905260409081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790556103d59061038c90610374908e018e610e46565b8e60600160208101906103879190610e24565b6108f2565b60405180608001604052806044815260200161115f604491398d60200160208101906103b89190610e24565b73ffffffffffffffffffffffffffffffffffffffff169190610921565b5073ffffffffffffffffffffffffffffffffffffffff89166103fd60408d0160208e01610e24565b604080518b8152602081018990529081018790526060810186905273ffffffffffffffffffffffffffffffffffffffff918216918d16907f116bfd46451bbd23e7a5f5b7420b28e3d98d4c477f173da513aaaeac3c4baada9060800160405180910390a45050505050505050505050565b600060405180608001604052806052815260200161110d605291398051906020012060405180606001604052806024815260200161106d602491398051602091820120604080518082018252600181527f310000000000000000000000000000000000000000000000000000000000000090840152805192830193909352918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260c00160405160208183030381529060405280519060200120905090565b46821461058e6040518060400160405280600781526020017f636861696e69640000000000000000000000000000000000000000000000000081525083610a2b90919063ffffffff16565b906105c6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102779190610cab565b505050565b8115806105d85750428210155b60408051808201909152600881527f646561646c696e65000000000000000000000000000000000000000000000000602082015261058e908390610a2b565b60006040518060a00160405280607c8152602001611091607c913980516020918201209083359061064e9060408601908601610e24565b61065b6040860186610e46565b604051610669929190610eab565b6040519081900390206106826080870160608801610e24565b60408051602081019690965285019390935273ffffffffffffffffffffffffffffffffffffffff9182166060850152608084810191909152911660a0838101919091529084013560c083015283013560e082015261010001604051602081830303815290604052805190602001209050919050565b60008281526020818152604091829020548251808401909352600683527f7265706c617900000000000000000000000000000000000000000000000000009183019190915260ff16159061058e908390610a2b565b6040517f1901000000000000000000000000000000000000000000000000000000000000602082015260228101869052604281018590526000906062016040516020818303038152906040528051906020012090506000806107e48387878080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610a5792505050565b909250905060008160048111156107fd576107fd610ebb565b14801561083557508373ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16145b6108e7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152605860248201527f47656c61746f52656c61793142616c616e6365436f6e63757272656e7445524360448201527f32373731426173652e5f7265717569726553706f6e736f72656443616c6c436f60648201527f6e63757272656e74455243323737315369676e61747572650000000000000000608482015260a401610277565b505095945050505050565b606083838360405160200161090993929190610eea565b60405160208183030381529060405290509392505050565b606060008473ffffffffffffffffffffffffffffffffffffffff168460405161094a9190610f23565b6000604051808303816000865af19150503d8060008114610987576040519150601f19603f3d011682016040523d82523d6000602084013e61098c565b606091505b50925090508015610a19578151600003610a145773ffffffffffffffffffffffffffffffffffffffff85163b1515836040516020016109cb9190610f3f565b60405160208183030381529060405290610a12576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102779190610cab565b505b610a23565b610a238284610a9c565b509392505050565b60608282604051602001610a40929190610f80565b604051602081830303815290604052905092915050565b6000808251604103610a8d5760208301516040840151606085015160001a610a8187828585610b98565b94509450505050610a95565b506000905060025b9250929050565b60208251610aaa9190610faf565b600403610b875760208201517fffffffff0000000000000000000000000000000000000000000000000000000081167f08c379a00000000000000000000000000000000000000000000000000000000003610b76576044830192508183604051602001610b18929190610f80565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152908290527f08c379a000000000000000000000000000000000000000000000000000000000825261027791600401610cab565b81604051602001610b189190610fea565b80604051602001610b18919061102b565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610bcf5750600090506003610c7e565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610c23573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610c7757600060019250925050610c7e565b9150600090505b94509492505050565b60005b83811015610ca2578181015183820152602001610c8a565b50506000910152565b6020815260008251806020840152610cca816040850160208701610c87565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b600060208284031215610d0e57600080fd5b5035919050565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d3957600080fd5b919050565b60008060008060008060008060006101008a8c031215610d5d57600080fd5b893567ffffffffffffffff80821115610d7557600080fd5b908b019060c0828e031215610d8957600080fd5b819a50610d9860208d01610d15565b9950610da660408d01610d15565b985060608c0135975060808c0135915080821115610dc357600080fd5b818c0191508c601f830112610dd757600080fd5b813581811115610de657600080fd5b8d6020828501011115610df857600080fd5b9a9d999c50979a96996020919091019890975060a08701359660c0810135965060e00135945092505050565b600060208284031215610e3657600080fd5b610e3f82610d15565b9392505050565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112610e7b57600080fd5b83018035915067ffffffffffffffff821115610e9657600080fd5b602001915036819003821315610a9557600080fd5b8183823760009101908152919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b8284823760609190911b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000169101908152601401919050565b60008251610f35818460208701610c87565b9190910192915050565b60008251610f51818460208701610c87565b7f43616c6c20746f206e6f6e20636f6e7472616374000000000000000000000000920191825250601401919050565b60008351610f92818460208801610c87565b835190830190610fa6818360208801610c87565b01949350505050565b600082610fe5577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500690565b60008251610ffc818460208701610c87565b7f4e6f4572726f7253656c6563746f720000000000000000000000000000000000920191825250600f01919050565b6000825161103d818460208701610c87565b7f556e657870656374656452657475726e6461746100000000000000000000000092019182525060140191905056fe47656c61746f52656c61793142616c616e6365436f6e63757272656e744552433237373153706f6e736f72656443616c6c436f6e63757272656e74455243323737312875696e7432353620636861696e49642c61646472657373207461726765742c627974657320646174612c6164647265737320757365722c62797465733332207573657253616c742c75696e743235362075736572446561646c696e6529454950373132446f6d61696e28737472696e67206e616d652c737472696e672076657273696f6e2c75696e7432353620636861696e49642c6164647265737320766572696679696e67436f6e74726163742947656c61746f52656c61793142616c616e6365436f6e63757272656e74455243323737312e73706f6e736f72656443616c6c436f6e63757272656e74455243323737313aa2646970667358221220043f96e1de62681eba9c66124b6afc10679fea757550e8d73cd2c24e0825eeec64736f6c634300081400330000000000000000000000002d4e9d6ac373d09033bf0b6579a881bf84b9ee3a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061007d5760003560e01c806354fd4d501161005b57806354fd4d50146100e9578063573ea5751461012557806390b15b0014610171578063b567146d1461017957600080fd5b806306fdde03146100825780633644e515146100a0578063533e62b6146100b6575b600080fd5b61008a61018e565b6040516100979190610cab565b60405180910390f35b6100a86101aa565b604051908152602001610097565b6100d96100c4366004610cfc565b60006020819052908152604090205460ff1681565b6040519015158152602001610097565b61008a6040518060400160405280600181526020017f310000000000000000000000000000000000000000000000000000000000000081525081565b61014c7f0000000000000000000000002d4e9d6ac373d09033bf0b6579a881bf84b9ee3a81565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610097565b6100a86101b9565b61018c610187366004610d3e565b6101dc565b005b60405180606001604052806024815260200161106d6024913981565b60006101b461046e565b905090565b6040518060a00160405280607c8152602001611091607c91398051906020012081565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000002d4e9d6ac373d09033bf0b6579a881bf84b9ee3a1614610280576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f4f6e6c792063616c6c61626c652062792067656c61746f00000000000000000060448201526064015b60405180910390fd5b6102a6896000013560405180608001604052806044815260200161115f60449139610543565b6102cc8960a0013560405180608001604052806044815260200161115f604491396105cb565b60006102d78a610617565b90506102fb8160405180608001604052806044815260200161115f604491396106f7565b600061030561046e565b9050610326818389898f60600160208101906103219190610e24565b61074c565b506000828152602081905260409081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790556103d59061038c90610374908e018e610e46565b8e60600160208101906103879190610e24565b6108f2565b60405180608001604052806044815260200161115f604491398d60200160208101906103b89190610e24565b73ffffffffffffffffffffffffffffffffffffffff169190610921565b5073ffffffffffffffffffffffffffffffffffffffff89166103fd60408d0160208e01610e24565b604080518b8152602081018990529081018790526060810186905273ffffffffffffffffffffffffffffffffffffffff918216918d16907f116bfd46451bbd23e7a5f5b7420b28e3d98d4c477f173da513aaaeac3c4baada9060800160405180910390a45050505050505050505050565b600060405180608001604052806052815260200161110d605291398051906020012060405180606001604052806024815260200161106d602491398051602091820120604080518082018252600181527f310000000000000000000000000000000000000000000000000000000000000090840152805192830193909352918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260c00160405160208183030381529060405280519060200120905090565b46821461058e6040518060400160405280600781526020017f636861696e69640000000000000000000000000000000000000000000000000081525083610a2b90919063ffffffff16565b906105c6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102779190610cab565b505050565b8115806105d85750428210155b60408051808201909152600881527f646561646c696e65000000000000000000000000000000000000000000000000602082015261058e908390610a2b565b60006040518060a00160405280607c8152602001611091607c913980516020918201209083359061064e9060408601908601610e24565b61065b6040860186610e46565b604051610669929190610eab565b6040519081900390206106826080870160608801610e24565b60408051602081019690965285019390935273ffffffffffffffffffffffffffffffffffffffff9182166060850152608084810191909152911660a0838101919091529084013560c083015283013560e082015261010001604051602081830303815290604052805190602001209050919050565b60008281526020818152604091829020548251808401909352600683527f7265706c617900000000000000000000000000000000000000000000000000009183019190915260ff16159061058e908390610a2b565b6040517f1901000000000000000000000000000000000000000000000000000000000000602082015260228101869052604281018590526000906062016040516020818303038152906040528051906020012090506000806107e48387878080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610a5792505050565b909250905060008160048111156107fd576107fd610ebb565b14801561083557508373ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16145b6108e7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152605860248201527f47656c61746f52656c61793142616c616e6365436f6e63757272656e7445524360448201527f32373731426173652e5f7265717569726553706f6e736f72656443616c6c436f60648201527f6e63757272656e74455243323737315369676e61747572650000000000000000608482015260a401610277565b505095945050505050565b606083838360405160200161090993929190610eea565b60405160208183030381529060405290509392505050565b606060008473ffffffffffffffffffffffffffffffffffffffff168460405161094a9190610f23565b6000604051808303816000865af19150503d8060008114610987576040519150601f19603f3d011682016040523d82523d6000602084013e61098c565b606091505b50925090508015610a19578151600003610a145773ffffffffffffffffffffffffffffffffffffffff85163b1515836040516020016109cb9190610f3f565b60405160208183030381529060405290610a12576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102779190610cab565b505b610a23565b610a238284610a9c565b509392505050565b60608282604051602001610a40929190610f80565b604051602081830303815290604052905092915050565b6000808251604103610a8d5760208301516040840151606085015160001a610a8187828585610b98565b94509450505050610a95565b506000905060025b9250929050565b60208251610aaa9190610faf565b600403610b875760208201517fffffffff0000000000000000000000000000000000000000000000000000000081167f08c379a00000000000000000000000000000000000000000000000000000000003610b76576044830192508183604051602001610b18929190610f80565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152908290527f08c379a000000000000000000000000000000000000000000000000000000000825261027791600401610cab565b81604051602001610b189190610fea565b80604051602001610b18919061102b565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610bcf5750600090506003610c7e565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610c23573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610c7757600060019250925050610c7e565b9150600090505b94509492505050565b60005b83811015610ca2578181015183820152602001610c8a565b50506000910152565b6020815260008251806020840152610cca816040850160208701610c87565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b600060208284031215610d0e57600080fd5b5035919050565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d3957600080fd5b919050565b60008060008060008060008060006101008a8c031215610d5d57600080fd5b893567ffffffffffffffff80821115610d7557600080fd5b908b019060c0828e031215610d8957600080fd5b819a50610d9860208d01610d15565b9950610da660408d01610d15565b985060608c0135975060808c0135915080821115610dc357600080fd5b818c0191508c601f830112610dd757600080fd5b813581811115610de657600080fd5b8d6020828501011115610df857600080fd5b9a9d999c50979a96996020919091019890975060a08701359660c0810135965060e00135945092505050565b600060208284031215610e3657600080fd5b610e3f82610d15565b9392505050565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112610e7b57600080fd5b83018035915067ffffffffffffffff821115610e9657600080fd5b602001915036819003821315610a9557600080fd5b8183823760009101908152919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b8284823760609190911b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000169101908152601401919050565b60008251610f35818460208701610c87565b9190910192915050565b60008251610f51818460208701610c87565b7f43616c6c20746f206e6f6e20636f6e7472616374000000000000000000000000920191825250601401919050565b60008351610f92818460208801610c87565b835190830190610fa6818360208801610c87565b01949350505050565b600082610fe5577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500690565b60008251610ffc818460208701610c87565b7f4e6f4572726f7253656c6563746f720000000000000000000000000000000000920191825250600f01919050565b6000825161103d818460208701610c87565b7f556e657870656374656452657475726e6461746100000000000000000000000092019182525060140191905056fe47656c61746f52656c61793142616c616e6365436f6e63757272656e744552433237373153706f6e736f72656443616c6c436f6e63757272656e74455243323737312875696e7432353620636861696e49642c61646472657373207461726765742c627974657320646174612c6164647265737320757365722c62797465733332207573657253616c742c75696e743235362075736572446561646c696e6529454950373132446f6d61696e28737472696e67206e616d652c737472696e672076657273696f6e2c75696e7432353620636861696e49642c6164647265737320766572696679696e67436f6e74726163742947656c61746f52656c61793142616c616e6365436f6e63757272656e74455243323737312e73706f6e736f72656443616c6c436f6e63757272656e74455243323737313aa2646970667358221220043f96e1de62681eba9c66124b6afc10679fea757550e8d73cd2c24e0825eeec64736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000002d4e9d6ac373d09033bf0b6579a881bf84b9ee3a
-----Decoded View---------------
Arg [0] : _gelato (address): 0x2d4E9d6ac373d09033BF0b6579A881bF84B9Ee3A
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000002d4e9d6ac373d09033bf0b6579a881bf84b9ee3a
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.