OP Sepolia Testnet

Contract

0x548e26a510661Fb614de8474EB0DC8Bd49477233
Transaction Hash
Method
Block
From
To
Withdraw To238085732025-02-13 4:08:0633 days ago1739419686IN
0x548e26a5...d49477233
0 ETH0.00000005320.00097025
Deposit228989212025-01-23 2:46:2254 days ago1737600382IN
0x548e26a5...d49477233
0.3 ETH0.0000002242830.00010025
Deposit228793832025-01-22 15:55:0655 days ago1737561306IN
0x548e26a5...d49477233
0.2 ETH0.0000169272170.00010025
Deposit228789222025-01-22 15:39:4455 days ago1737560384IN
0x548e26a5...d49477233
0.1 ETH0.0000081649930.00097996
Deposit214507402024-12-20 14:13:4088 days ago1734704020IN
0x548e26a5...d49477233
0.3 ETH0.0000181334680.00010027

Latest 5 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
228989212025-01-23 2:46:2254 days ago1737600382
0x548e26a5...d49477233
0.3 ETH
228793832025-01-22 15:55:0655 days ago1737561306
0x548e26a5...d49477233
0.2 ETH
228789222025-01-22 15:39:4455 days ago1737560384
0x548e26a5...d49477233
0.1 ETH
214507402024-12-20 14:13:4088 days ago1734704020
0x548e26a5...d49477233
0.3 ETH
214503012024-12-20 13:59:0288 days ago1734703142  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AuthPaymaster

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 28 : AuthPaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "../aa/interfaces/IEntryPoint.sol";
import "../aa/core/BasePaymaster.sol";
import "../aa/core/Helpers.sol";
import "../aa/core/UserOperationLib.sol";

import "./IAuthFund.sol";
import "./AuthPaymasterLib.sol";

contract AuthPaymaster is BasePaymaster, IAuthFund {

    using UserOperationLib for PackedUserOperation;

    struct PaymasterContext {
        uint256 prefund;
        address token;
        uint256 tokenPrice;
        uint48 validAfter;
        uint48 validUntil;
        address guarantor;
        address targetToken;
        uint256 targetAmount;
    }

    uint256 public postopGasLimit = 50_000;
    uint256 public constant EXCHANGE_RATE_SCALE = 1e8;

    constructor(
        IEntryPoint _entryPoint,
        address _owner
    ) BasePaymaster(_entryPoint) {
        transferOwnership(_owner);
    }

    /// @notice Validates a paymaster user operation.
    /// @param userOp The user operation data.
    /// @param /*userOpHash*/ The hash of the user operation.
    /// @param /*requiredPreFund*/ The maximum cost (in native token) the paymaster has to prefund.
    /// @return userOpContext The context data for post operation.
    /// @return validationData A uint256 value indicating the result of the validation.
    function _validatePaymasterUserOp(PackedUserOperation calldata userOp, bytes32 /*userOpHash*/, uint256 /*requiredPreFund*/)
    internal
    override
    returns (bytes memory userOpContext, uint256 validationData) {
        // Extract paymaster context and signature from userOp.
        (PaymasterContext memory paymasterContext, bytes calldata paymasterSig, bytes calldata guarantorSig) = parseUserOp(userOp);

        // Validate the signature.
        bytes32 userOpPaymasterHash = getHash(userOp);
        bytes32 msgHash = MessageHashUtils.toEthSignedMessageHash(userOpPaymasterHash);
        bool valid = owner() == ECDSA.recover(msgHash, paymasterSig);

        // Optionally, transfer target funds to account.

        if (paymasterContext.targetToken != address(0)) {
            SafeERC20.safeTransfer(IERC20(paymasterContext.targetToken), userOp.sender, paymasterContext.targetAmount);
        }

        // Optionally, verify guarantor sig and set guarantor as userOp sponsor.
        address spender = userOp.sender;
        if (paymasterContext.guarantor != address(0)) {
            // Verify guarantor sig.
            bool guarantorSigValid = paymasterContext.guarantor == ECDSA.recover(msgHash, guarantorSig);
            valid = valid && guarantorSigValid;

            // Set the guarantor as the transaction spender.
            spender = paymasterContext.guarantor;
        }

        // Encode context and validation data.
        userOpContext = encodeUserOpContext(spender, paymasterContext.prefund, paymasterContext.token, paymasterContext.tokenPrice);
        validationData = _packValidationData(!valid, paymasterContext.validUntil, paymasterContext.validAfter);
    }

    function parseUserOp(PackedUserOperation calldata userOp) internal pure returns (PaymasterContext memory context, bytes calldata paymasterSig, bytes calldata guarantorSig) {
        // Decode paymaster context.
        context = decodePaymasterData(userOp.paymasterAndData[PAYMASTER_DATA_OFFSET:]);

        // Extract paymaster signature and guarantor signature from userOp.signature.
        (, bytes calldata paymasterSigData) = AuthPaymasterLib.parseUserOpSignature(userOp.signature);
        (paymasterSig, guarantorSig) = AuthPaymasterLib.parsePaymasterSigData(paymasterSigData);
    
    }

    function decodePaymasterData(bytes calldata paymasterData) public pure returns (PaymasterContext memory context) {
        (
            context.prefund,
            context.token,
            context.tokenPrice,
            context.validAfter,
            context.validUntil,
            context.guarantor,
            context.targetToken,
            context.targetAmount
        ) = abi.decode(paymasterData, (uint256, address, uint256, uint48, uint48, address, address, uint256)); // TODO this encoding can be optimized. (validAfter, validUntil, guarantor) fit into one bytes32 slot.
    }

    function encodeUserOpContext(address spender, uint256 prefundAmount, address token, uint256 tokenPrice) internal pure returns (bytes memory) {
        return abi.encode(spender, prefundAmount, token, tokenPrice);
    }

   function decodeUserOpContext(bytes calldata context) internal pure returns (address spender, uint256 prefundAmount, address token, uint256 tokenPrice) {
        return abi.decode(context, (address, uint256, address, uint256));
    }

    /**
     * Return the hash we're going to sign off-chain (and validate on-chain)
     * this method is called by the off-chain service, to sign the request.
     */
    function getHash(PackedUserOperation calldata userOp)
    public view returns (bytes32) {
        bytes32 userOpHash = userOp.hash();
        return keccak256(abi.encode(userOpHash, address(this), block.chainid));
    }

    /// @notice Performs post-operation tasks, such as updating the token price
    /// and refunding excess tokens.
    /// @dev This function is called after a user operation has been executed or
    /// reverted.
    /// @param context - The context containing the transaction hash.
    /// @param actualGasCost - The actual gas cost of the transaction.
    /// @param actualUserOpFeePerGas - The gas price this UserOp pays. This
    /// value is based on the UserOp's maxFeePerGas and maxPriorityFee (and
    /// basefee). It is not the same as tx.gasprice, which is what the bundler
    /// pays.
    function _postOp(PostOpMode, bytes calldata context, uint256 actualGasCost, uint256 actualUserOpFeePerGas) internal override {
        (address spender, uint256 prefundAmount, address token, uint256 tokenPrice) = decodeUserOpContext(context);
        uint256 actualCharge = actualGasCost + postopGasLimit * actualUserOpFeePerGas;

        if (prefundAmount > actualCharge) {
            // If the initial amount provided is greater than the actual amount
            // needed, refund the difference.
            uint256 diff = prefundAmount - actualCharge;
            uint256 diffToken = weiToToken(diff, tokenPrice);
            SafeERC20.safeTransfer(IERC20(token), spender, diffToken);
        } else if (prefundAmount < actualCharge) {
            // If the initial amount provided is less than the actual amount
            // needed, charge the difference.
            uint256 diff = actualCharge - prefundAmount;
            uint256 diffToken = weiToToken(diff, tokenPrice);
            SafeERC20.safeTransferFrom(IERC20(token), spender, address(this), diffToken);
        }
    }

    /// @notice Converts a specified amount of native tokens to ERC20 tokens.
    function weiToToken(uint256 weiAmount, uint256 tokenPrice) public pure returns (uint256) {
        return (weiAmount * EXCHANGE_RATE_SCALE) / tokenPrice;
    }

    /// @notice Allows the contract owner to withdraw a specified amount of ERC20 tokens from the contract.
    function withdrawERC20(address token, address to, uint256 amount) external onlyOwner {
        SafeERC20.safeTransfer(IERC20(token), to, amount);
    }

    /// @notice Allows the contract owner to withdraw a specified amount of native tokens from the contract.
    function withdrawNative(address payable recipient, uint256 amount) external onlyOwner {
        (bool success,) = recipient.call{value: amount}("");
        require(success, "withdraw failed");
    }

    receive() external payable {}

    /// Fund contract

    function prefund(address token, uint256 amount, bytes32 opHash) public {
        _prefund(token, amount, opHash, msg.sender);
    }

    function prefundFromGuarantor(
        address token,
        uint256 amount,
        bytes32 opHash,
        address guarantor,
        uint48 validUntil,
        bytes calldata guarantorSig
    ) public {
        // Verify guarantor signature.
        verifyGuarantorSig(token, amount, opHash, guarantor, validUntil, guarantorSig);

        _prefund(token, amount, opHash, guarantor);
    }

    function _prefund(address token, uint256 amount, bytes32 opHash, address from) internal {
        // Transfer token from sender to this contract
        SafeERC20.safeTransferFrom(IERC20(token), from, address(this), amount);

        // Emit prefunded event.
        emit Prefund(token, amount, opHash);
    }

    function verifyGuarantorSig(
        address token,
        uint256 amount,
        bytes32 opHash,
        address guarantor,
        uint48 validUntil,
        bytes calldata guarantorSig
    ) internal view {
        // Verify signature.
        bytes32 hash = getGuarantorHash(token, amount, opHash, validUntil);
        bytes32 messageHash = MessageHashUtils.toEthSignedMessageHash(hash);
        require(guarantor == ECDSA.recover(messageHash, guarantorSig), "invalid guarantor signature");

        // Verify time boundary.
        require(block.timestamp <= validUntil, "validUntil");
    }

    function getGuarantorHash(
        address token,
        uint256 amount,
        bytes32 opHash,
        uint48 validUntil
    ) public view returns (bytes32) {
        return keccak256(abi.encode(token, amount, opHash, validUntil, address(this), block.chainid));
    }
}

File 2 of 28 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 28 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 4 of 28 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 5 of 28 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 6 of 28 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 7 of 28 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 8 of 28 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 9 of 28 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 10 of 28 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 11 of 28 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 12 of 28 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 13 of 28 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 14 of 28 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 15 of 28 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 16 of 28 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 17 of 28 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 18 of 28 : BasePaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable reason-string */

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "../interfaces/IPaymaster.sol";
import "../interfaces/IEntryPoint.sol";
import "./UserOperationLib.sol";
/**
 * Helper class for creating a paymaster.
 * provides helper methods for staking.
 * Validates that the postOp is called only by the entryPoint.
 */
abstract contract BasePaymaster is IPaymaster, Ownable {
    IEntryPoint public immutable entryPoint;

    uint256 internal constant PAYMASTER_VALIDATION_GAS_OFFSET = UserOperationLib.PAYMASTER_VALIDATION_GAS_OFFSET;
    uint256 internal constant PAYMASTER_POSTOP_GAS_OFFSET = UserOperationLib.PAYMASTER_POSTOP_GAS_OFFSET;
    uint256 internal constant PAYMASTER_DATA_OFFSET = UserOperationLib.PAYMASTER_DATA_OFFSET;

    constructor(IEntryPoint _entryPoint) Ownable(msg.sender) {
        _validateEntryPointInterface(_entryPoint);
        entryPoint = _entryPoint;
    }

    //sanity check: make sure this EntryPoint was compiled against the same
    // IEntryPoint of this paymaster
    function _validateEntryPointInterface(IEntryPoint _entryPoint) internal virtual {
        require(IERC165(address(_entryPoint)).supportsInterface(type(IEntryPoint).interfaceId), "IEntryPoint interface mismatch");
    }

    /// @inheritdoc IPaymaster
    function validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) external override returns (bytes memory context, uint256 validationData) {
        _requireFromEntryPoint();
        return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
    }

    /**
     * Validate a user operation.
     * @param userOp     - The user operation.
     * @param userOpHash - The hash of the user operation.
     * @param maxCost    - The maximum cost of the user operation.
     */
    function _validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) internal virtual returns (bytes memory context, uint256 validationData);

    /// @inheritdoc IPaymaster
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost,
        uint256 actualUserOpFeePerGas
    ) external override {
        _requireFromEntryPoint();
        _postOp(mode, context, actualGasCost, actualUserOpFeePerGas);
    }

    /**
     * Post-operation handler.
     * (verified to be called only through the entryPoint)
     * @dev If subclass returns a non-empty context from validatePaymasterUserOp,
     *      it must also implement this method.
     * @param mode          - Enum with the following options:
     *                        opSucceeded - User operation succeeded.
     *                        opReverted  - User op reverted. The paymaster still has to pay for gas.
     *                        postOpReverted - never passed in a call to postOp().
     * @param context       - The context value returned by validatePaymasterUserOp
     * @param actualGasCost - Actual gas used so far (without this postOp call).
     * @param actualUserOpFeePerGas - the gas price this UserOp pays. This value is based on the UserOp's maxFeePerGas
     *                        and maxPriorityFee (and basefee)
     *                        It is not the same as tx.gasprice, which is what the bundler pays.
     */
    function _postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost,
        uint256 actualUserOpFeePerGas
    ) internal virtual {
        (mode, context, actualGasCost, actualUserOpFeePerGas); // unused params
        // subclass must override this method if validatePaymasterUserOp returns a context
        revert("must override");
    }

    /**
     * Add a deposit for this paymaster, used for paying for transaction fees.
     */
    function deposit() public payable {
        entryPoint.depositTo{value: msg.value}(address(this));
    }

    /**
     * Withdraw value from the deposit.
     * @param withdrawAddress - Target to send to.
     * @param amount          - Amount to withdraw.
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 amount
    ) public onlyOwner {
        entryPoint.withdrawTo(withdrawAddress, amount);
    }

    /**
     * Add stake for this paymaster.
     * This method can also carry eth value to add to the current stake.
     * @param unstakeDelaySec - The unstake delay for this paymaster. Can only be increased.
     */
    function addStake(uint32 unstakeDelaySec) external payable onlyOwner {
        entryPoint.addStake{value: msg.value}(unstakeDelaySec);
    }

    /**
     * Return current paymaster's deposit on the entryPoint.
     */
    function getDeposit() public view returns (uint256) {
        return entryPoint.balanceOf(address(this));
    }

    /**
     * Unlock the stake, in order to withdraw it.
     * The paymaster can't serve requests once unlocked, until it calls addStake again
     */
    function unlockStake() external onlyOwner {
        entryPoint.unlockStake();
    }

    /**
     * Withdraw the entire paymaster's stake.
     * stake must be unlocked first (and then wait for the unstakeDelay to be over)
     * @param withdrawAddress - The address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external onlyOwner {
        entryPoint.withdrawStake(withdrawAddress);
    }

    /**
     * Validate the call is made from a valid entrypoint
     */
    function _requireFromEntryPoint() internal virtual {
        require(msg.sender == address(entryPoint), "Sender not EntryPoint");
    }
}

File 19 of 28 : Helpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable no-inline-assembly */


 /*
  * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
  * must return this value in case of signature failure, instead of revert.
  */
uint256 constant SIG_VALIDATION_FAILED = 1;


/*
 * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
 * return this value on success.
 */
uint256 constant SIG_VALIDATION_SUCCESS = 0;


/**
 * Returned data from validateUserOp.
 * validateUserOp returns a uint256, which is created by `_packedValidationData` and
 * parsed by `_parseValidationData`.
 * @param aggregator  - address(0) - The account validated the signature by itself.
 *                      address(1) - The account failed to validate the signature.
 *                      otherwise - This is an address of a signature aggregator that must
 *                                  be used to validate the signature.
 * @param validAfter  - This UserOp is valid only after this timestamp.
 * @param validaUntil - This UserOp is valid only up to this timestamp.
 */
struct ValidationData {
    address aggregator;
    uint48 validAfter;
    uint48 validUntil;
}

/**
 * Extract sigFailed, validAfter, validUntil.
 * Also convert zero validUntil to type(uint48).max.
 * @param validationData - The packed validation data.
 */
function _parseValidationData(
    uint256 validationData
) pure returns (ValidationData memory data) {
    address aggregator = address(uint160(validationData));
    uint48 validUntil = uint48(validationData >> 160);
    if (validUntil == 0) {
        validUntil = type(uint48).max;
    }
    uint48 validAfter = uint48(validationData >> (48 + 160));
    return ValidationData(aggregator, validAfter, validUntil);
}

/**
 * Helper to pack the return value for validateUserOp.
 * @param data - The ValidationData to pack.
 */
function _packValidationData(
    ValidationData memory data
) pure returns (uint256) {
    return
        uint160(data.aggregator) |
        (uint256(data.validUntil) << 160) |
        (uint256(data.validAfter) << (160 + 48));
}

/**
 * Helper to pack the return value for validateUserOp, when not using an aggregator.
 * @param sigFailed  - True for signature failure, false for success.
 * @param validUntil - Last timestamp this UserOperation is valid (or zero for infinite).
 * @param validAfter - First timestamp this UserOperation is valid.
 */
function _packValidationData(
    bool sigFailed,
    uint48 validUntil,
    uint48 validAfter
) pure returns (uint256) {
    return
        (sigFailed ? 1 : 0) |
        (uint256(validUntil) << 160) |
        (uint256(validAfter) << (160 + 48));
}

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly ("memory-safe") {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }


/**
 * The minimum of two numbers.
 * @param a - First number.
 * @param b - Second number.
 */
    function min(uint256 a, uint256 b) pure returns (uint256) {
        return a < b ? a : b;
    }

File 20 of 28 : UserOperationLib.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable no-inline-assembly */

import "../interfaces/PackedUserOperation.sol";
import {calldataKeccak, min} from "./Helpers.sol";

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20;
    uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36;
    uint256 public constant PAYMASTER_DATA_OFFSET = 52;
    /**
     * Get sender from user operation data.
     * @param userOp - The user operation data.
     */
    function getSender(
        PackedUserOperation calldata userOp
    ) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {
            data := calldataload(userOp)
        }
        return address(uint160(data));
    }

    /**
     * Relayer/block builder might submit the TX with higher priorityFee,
     * but the user should not pay above what he signed for.
     * @param userOp - The user operation data.
     */
    function gasPrice(
        PackedUserOperation calldata userOp
    ) internal view returns (uint256) {
        unchecked {
            (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees);
            if (maxFeePerGas == maxPriorityFeePerGas) {
                //legacy mode (for networks that don't support basefee opcode)
                return maxFeePerGas;
            }
            return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
        }
    }

    /**
     * Pack the user operation data into bytes for hashing.
     * @param userOp - The user operation data.
     */
    function encode(
        PackedUserOperation calldata userOp
    ) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        bytes32 accountGasLimits = userOp.accountGasLimits;
        uint256 preVerificationGas = userOp.preVerificationGas;
        bytes32 gasFees = userOp.gasFees;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            accountGasLimits, preVerificationGas, gasFees,
            hashPaymasterAndData
        );
    }

    function unpackUints(
        bytes32 packed
    ) internal pure returns (uint256 high128, uint256 low128) {
        return (uint128(bytes16(packed)), uint128(uint256(packed)));
    }

    //unpack just the high 128-bits from a packed value
    function unpackHigh128(bytes32 packed) internal pure returns (uint256) {
        return uint256(packed) >> 128;
    }

    // unpack just the low 128-bits from a packed value
    function unpackLow128(bytes32 packed) internal pure returns (uint256) {
        return uint128(uint256(packed));
    }

    function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.gasFees);
    }

    function unpackMaxFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.gasFees);
    }

    function unpackVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.accountGasLimits);
    }

    function unpackCallGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.accountGasLimits);
    }

    function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET]));
    }

    function unpackPostOpGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]));
    }

    function unpackPaymasterStaticFields(
        bytes calldata paymasterAndData
    ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) {
        return (
            address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]))
        );
    }

    /**
     * Hash the user operation data.
     * @param userOp - The user operation data.
     */
    function hash(
        PackedUserOperation calldata userOp
    ) internal pure returns (bytes32) {
        return keccak256(encode(userOp));
    }
}

File 21 of 28 : IAggregator.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

import "./PackedUserOperation.sol";

/**
 * Aggregated Signatures validator.
 */
interface IAggregator {
    /**
     * Validate aggregated signature.
     * Revert if the aggregated signature does not match the given list of operations.
     * @param userOps   - Array of UserOperations to validate the signature for.
     * @param signature - The aggregated signature.
     */
    function validateSignatures(
        PackedUserOperation[] calldata userOps,
        bytes calldata signature
    ) external view;

    /**
     * Validate signature of a single userOp.
     * This method should be called by bundler after EntryPointSimulation.simulateValidation() returns
     * the aggregator this account uses.
     * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
     * @param userOp        - The userOperation received from the user.
     * @return sigForUserOp - The value to put into the signature field of the userOp when calling handleOps.
     *                        (usually empty, unless account and aggregator support some kind of "multisig".
     */
    function validateUserOpSignature(
        PackedUserOperation calldata userOp
    ) external view returns (bytes memory sigForUserOp);

    /**
     * Aggregate multiple signatures into a single value.
     * This method is called off-chain to calculate the signature to pass with handleOps()
     * bundler MAY use optimized custom code perform this aggregation.
     * @param userOps              - Array of UserOperations to collect the signatures from.
     * @return aggregatedSignature - The aggregated signature.
     */
    function aggregateSignatures(
        PackedUserOperation[] calldata userOps
    ) external view returns (bytes memory aggregatedSignature);
}

File 22 of 28 : IEntryPoint.sol
/**
 ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
 ** Only one instance required on each chain.
 **/
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */

import "./PackedUserOperation.sol";
import "./IStakeManager.sol";
import "./IAggregator.sol";
import "./INonceManager.sol";

interface IEntryPoint is IStakeManager, INonceManager {
    /***
     * An event emitted after each successful request.
     * @param userOpHash    - Unique identifier for the request (hash its entire content, except signature).
     * @param sender        - The account that generates this request.
     * @param paymaster     - If non-null, the paymaster that pays for this request.
     * @param nonce         - The nonce value from the request.
     * @param success       - True if the sender transaction succeeded, false if reverted.
     * @param actualGasCost - Actual amount paid (by account or paymaster) for this UserOperation.
     * @param actualGasUsed - Total gas used by this UserOperation (including preVerification, creation,
     *                        validation and execution).
     */
    event UserOperationEvent(
        bytes32 indexed userOpHash,
        address indexed sender,
        address indexed paymaster,
        uint256 nonce,
        bool success,
        uint256 actualGasCost,
        uint256 actualGasUsed
    );

    /**
     * Account "sender" was deployed.
     * @param userOpHash - The userOp that deployed this account. UserOperationEvent will follow.
     * @param sender     - The account that is deployed
     * @param factory    - The factory used to deploy this account (in the initCode)
     * @param paymaster  - The paymaster used by this UserOp
     */
    event AccountDeployed(
        bytes32 indexed userOpHash,
        address indexed sender,
        address factory,
        address paymaster
    );

    /**
     * An event emitted if the UserOperation "callData" reverted with non-zero length.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     * @param revertReason - The return bytes from the (reverted) call to "callData".
     */
    event UserOperationRevertReason(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce,
        bytes revertReason
    );

    /**
     * An event emitted if the UserOperation Paymaster's "postOp" call reverted with non-zero length.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     * @param revertReason - The return bytes from the (reverted) call to "callData".
     */
    event PostOpRevertReason(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce,
        bytes revertReason
    );

    /**
     * UserOp consumed more than prefund. The UserOperation is reverted, and no refund is made.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     */
    event UserOperationPrefundTooLow(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce
    );

    /**
     * An event emitted by handleOps(), before starting the execution loop.
     * Any event emitted before this event, is part of the validation.
     */
    event BeforeExecution();

    /**
     * Signature aggregator used by the following UserOperationEvents within this bundle.
     * @param aggregator - The aggregator used for the following UserOperationEvents.
     */
    event SignatureAggregatorChanged(address indexed aggregator);

    /**
     * A custom revert error of handleOps, to identify the offending op.
     * Should be caught in off-chain handleOps simulation and not happen on-chain.
     * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
     * NOTE: If simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
     * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero).
     * @param reason  - Revert reason. The string starts with a unique code "AAmn",
     *                  where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
     *                  so a failure can be attributed to the correct entity.
     */
    error FailedOp(uint256 opIndex, string reason);

    /**
     * A custom revert error of handleOps, to report a revert by account or paymaster.
     * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero).
     * @param reason  - Revert reason. see FailedOp(uint256,string), above
     * @param inner   - data from inner cought revert reason
     * @dev note that inner is truncated to 2048 bytes
     */
    error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner);

    error PostOpReverted(bytes returnData);

    /**
     * Error case when a signature aggregator fails to verify the aggregated signature it had created.
     * @param aggregator The aggregator that failed to verify the signature
     */
    error SignatureValidationFailed(address aggregator);

    // Return value of getSenderAddress.
    error SenderAddressResult(address sender);

    // UserOps handled, per aggregator.
    struct UserOpsPerAggregator {
        PackedUserOperation[] userOps;
        // Aggregator address
        IAggregator aggregator;
        // Aggregated signature
        bytes signature;
    }

    /**
     * Execute a batch of UserOperations.
     * No signature aggregator is used.
     * If any account requires an aggregator (that is, it returned an aggregator when
     * performing simulateValidation), then handleAggregatedOps() must be used instead.
     * @param ops         - The operations to execute.
     * @param beneficiary - The address to receive the fees.
     */
    function handleOps(
        PackedUserOperation[] calldata ops,
        address payable beneficiary
    ) external;

    /**
     * Execute a batch of UserOperation with Aggregators
     * @param opsPerAggregator - The operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts).
     * @param beneficiary      - The address to receive the fees.
     */
    function handleAggregatedOps(
        UserOpsPerAggregator[] calldata opsPerAggregator,
        address payable beneficiary
    ) external;

    /**
     * Generate a request Id - unique identifier for this request.
     * The request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
     * @param userOp - The user operation to generate the request ID for.
     * @return hash the hash of this UserOperation
     */
    function getUserOpHash(
        PackedUserOperation calldata userOp
    ) external view returns (bytes32);

    /**
     * Gas and return values during simulation.
     * @param preOpGas         - The gas used for validation (including preValidationGas)
     * @param prefund          - The required prefund for this operation
     * @param accountValidationData   - returned validationData from account.
     * @param paymasterValidationData - return validationData from paymaster.
     * @param paymasterContext - Returned by validatePaymasterUserOp (to be passed into postOp)
     */
    struct ReturnInfo {
        uint256 preOpGas;
        uint256 prefund;
        uint256 accountValidationData;
        uint256 paymasterValidationData;
        bytes paymasterContext;
    }

    /**
     * Returned aggregated signature info:
     * The aggregator returned by the account, and its current stake.
     */
    struct AggregatorStakeInfo {
        address aggregator;
        StakeInfo stakeInfo;
    }

    /**
     * Get counterfactual sender address.
     * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
     * This method always revert, and returns the address in SenderAddressResult error
     * @param initCode - The constructor code to be passed into the UserOperation.
     */
    function getSenderAddress(bytes memory initCode) external;

    error DelegateAndRevert(bool success, bytes ret);

    /**
     * Helper method for dry-run testing.
     * @dev calling this method, the EntryPoint will make a delegatecall to the given data, and report (via revert) the result.
     *  The method always revert, so is only useful off-chain for dry run calls, in cases where state-override to replace
     *  actual EntryPoint code is less convenient.
     * @param target a target contract to make a delegatecall from entrypoint
     * @param data data to pass to target in a delegatecall
     */
    function delegateAndRevert(address target, bytes calldata data) external;
}

File 23 of 28 : INonceManager.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

interface INonceManager {

    /**
     * Return the next nonce for this sender.
     * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
     * But UserOp with different keys can come with arbitrary order.
     *
     * @param sender the account address
     * @param key the high 192 bit of the nonce
     * @return nonce a full nonce to pass for next UserOp with this sender.
     */
    function getNonce(address sender, uint192 key)
    external view returns (uint256 nonce);

    /**
     * Manually increment the nonce of the sender.
     * This method is exposed just for completeness..
     * Account does NOT need to call it, neither during validation, nor elsewhere,
     * as the EntryPoint will update the nonce regardless.
     * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
     * UserOperations will not pay extra for the first transaction with a given key.
     */
    function incrementNonce(uint192 key) external;
}

File 24 of 28 : IPaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

import "./PackedUserOperation.sol";

/**
 * The interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
 * A paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
 */
interface IPaymaster {
    enum PostOpMode {
        // User op succeeded.
        opSucceeded,
        // User op reverted. Still has to pay for gas.
        opReverted,
        // Only used internally in the EntryPoint (cleanup after postOp reverts). Never calling paymaster with this value
        postOpReverted
    }

    /**
     * Payment validation: check if paymaster agrees to pay.
     * Must verify sender is the entryPoint.
     * Revert to reject this request.
     * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted).
     * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
     * @param userOp          - The user operation.
     * @param userOpHash      - Hash of the user's request data.
     * @param maxCost         - The maximum cost of this transaction (based on maximum gas and gas price from userOp).
     * @return context        - Value to send to a postOp. Zero length to signify postOp is not required.
     * @return validationData - Signature and time-range of this operation, encoded the same as the return
     *                          value of validateUserOperation.
     *                          <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
     *                                                    other values are invalid for paymaster.
     *                          <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
     *                          <6-byte> validAfter - first timestamp this operation is valid
     *                          Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) external returns (bytes memory context, uint256 validationData);

    /**
     * Post-operation handler.
     * Must verify sender is the entryPoint.
     * @param mode          - Enum with the following options:
     *                        opSucceeded - User operation succeeded.
     *                        opReverted  - User op reverted. The paymaster still has to pay for gas.
     *                        postOpReverted - never passed in a call to postOp().
     * @param context       - The context value returned by validatePaymasterUserOp
     * @param actualGasCost - Actual gas used so far (without this postOp call).
     * @param actualUserOpFeePerGas - the gas price this UserOp pays. This value is based on the UserOp's maxFeePerGas
     *                        and maxPriorityFee (and basefee)
     *                        It is not the same as tx.gasprice, which is what the bundler pays.
     */
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost,
        uint256 actualUserOpFeePerGas
    ) external;
}

File 25 of 28 : IStakeManager.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.7.5;

/**
 * Manage deposits and stakes.
 * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account).
 * Stake is value locked for at least "unstakeDelay" by the staked entity.
 */
interface IStakeManager {
    event Deposited(address indexed account, uint256 totalDeposit);

    event Withdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    // Emitted when stake or unstake delay are modified.
    event StakeLocked(
        address indexed account,
        uint256 totalStaked,
        uint256 unstakeDelaySec
    );

    // Emitted once a stake is scheduled for withdrawal.
    event StakeUnlocked(address indexed account, uint256 withdrawTime);

    event StakeWithdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /**
     * @param deposit         - The entity's deposit.
     * @param staked          - True if this entity is staked.
     * @param stake           - Actual amount of ether staked for this entity.
     * @param unstakeDelaySec - Minimum delay to withdraw the stake.
     * @param withdrawTime    - First block timestamp where 'withdrawStake' will be callable, or zero if already locked.
     * @dev Sizes were chosen so that deposit fits into one cell (used during handleOp)
     *      and the rest fit into a 2nd cell (used during stake/unstake)
     *      - 112 bit allows for 10^15 eth
     *      - 48 bit for full timestamp
     *      - 32 bit allows 150 years for unstake delay
     */
    struct DepositInfo {
        uint256 deposit;
        bool staked;
        uint112 stake;
        uint32 unstakeDelaySec;
        uint48 withdrawTime;
    }

    // API struct used by getStakeInfo and simulateValidation.
    struct StakeInfo {
        uint256 stake;
        uint256 unstakeDelaySec;
    }

    /**
     * Get deposit info.
     * @param account - The account to query.
     * @return info   - Full deposit information of given account.
     */
    function getDepositInfo(
        address account
    ) external view returns (DepositInfo memory info);

    /**
     * Get account balance.
     * @param account - The account to query.
     * @return        - The deposit (for gas payment) of the account.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * Add to the deposit of the given account.
     * @param account - The account to add to.
     */
    function depositTo(address account) external payable;

    /**
     * Add to the account's stake - amount and delay
     * any pending unstake is first cancelled.
     * @param _unstakeDelaySec - The new lock duration before the deposit can be withdrawn.
     */
    function addStake(uint32 _unstakeDelaySec) external payable;

    /**
     * Attempt to unlock the stake.
     * The value can be withdrawn (using withdrawStake) after the unstake delay.
     */
    function unlockStake() external;

    /**
     * Withdraw from the (unlocked) stake.
     * Must first call unlockStake and wait for the unstakeDelay to pass.
     * @param withdrawAddress - The address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external;

    /**
     * Withdraw from the deposit.
     * @param withdrawAddress - The address to send withdrawn value.
     * @param withdrawAmount  - The amount to withdraw.
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 withdrawAmount
    ) external;
}

File 26 of 28 : PackedUserOperation.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

/**
 * User Operation struct
 * @param sender                - The sender account of this request.
 * @param nonce                 - Unique value the sender uses to verify it is not a replay.
 * @param initCode              - If set, the account contract will be created by this constructor/
 * @param callData              - The method call to execute on this account.
 * @param accountGasLimits      - Packed gas limits for validateUserOp and gas limit passed to the callData method call.
 * @param preVerificationGas    - Gas not calculated by the handleOps method, but added to the gas paid.
 *                                Covers batch overhead.
 * @param gasFees               - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters.
 * @param paymasterAndData      - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data
 *                                The paymaster will pay for the transaction instead of the sender.
 * @param signature             - Sender-verified signature over the entire request, the EntryPoint address and the chain ID.
 */
struct PackedUserOperation {
    address sender;
    uint256 nonce;
    bytes initCode;
    bytes callData;
    bytes32 accountGasLimits;
    uint256 preVerificationGas;
    bytes32 gasFees;
    bytes paymasterAndData;
    bytes signature;
}

File 27 of 28 : AuthPaymasterLib.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.24;

library AuthPaymasterLib {
    /**
     * Parses `sig` into `accountSig` and `paymasterSigData`.
     * 
     * `sig` format:
     * |AccountSigLength:uint16|
     * |AccountSig:{AccountSigLength}bytes|
     * |PaymasterSigData:bytes|
     */
    function parseUserOpSignature(bytes calldata sig) internal pure returns (bytes calldata accountSig, bytes calldata paymasterSigData) {
        // Parse accountSig length.
        uint256 uint16Length = 2;
        uint16 accountSigLength = (uint16(uint8(sig[0])) << 8) | uint16(uint8(sig[1]));

        // Compute data field offsets.
        uint256 accountSigOffset = uint16Length;
        uint256 paymasterDataOffset = accountSigOffset + accountSigLength;

        accountSig = sig[accountSigOffset:paymasterDataOffset];
        paymasterSigData = sig[paymasterDataOffset:];
    }

    /**
     * Parses `paymasterSigData` into `paymasterSig` and `guarantorSig`.
     *
     * `paymasterSigData` format:
     * optional {
     *     |PaymasterSig:{65}bytes|
     *     optional{ |GuarantorSig:{65}bytes| }
     * }
     */
    function parsePaymasterSigData(bytes calldata paymasterSigData) internal pure returns (bytes calldata paymasterSig, bytes calldata guarantorSig) {
        // Parse paymasterSig.
        paymasterSig = paymasterSigData[0:65];

        // Parse guarantorSig.
        if (paymasterSigData.length > 65) {
            guarantorSig = paymasterSigData[65:130];
        } else {
            guarantorSig = paymasterSigData[0:0];
        }
    }
}

File 28 of 28 : IAuthFund.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

interface IAuthFund {
    event Prefund(address token, uint256 amount, bytes32 indexed opHash);

    function prefund(address token, uint256 amount, bytes32 opHash) external;

    function prefundFromGuarantor(
        address token,
        uint256 amount,
        bytes32 opHash,
        address guarantor,
        uint48 validUntil,
        bytes calldata guarantorSig
    ) external;

    function getGuarantorHash(
        address token,
        uint256 amount,
        bytes32 opHash,
        uint48 validUntil
    ) external view returns (bytes32);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "viaIR": true,
  "evmVersion": "cancun",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract ABI

API
[{"inputs":[{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"opHash","type":"bytes32"}],"name":"Prefund","type":"event"},{"inputs":[],"name":"EXCHANGE_RATE_SCALE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"paymasterData","type":"bytes"}],"name":"decodePaymasterData","outputs":[{"components":[{"internalType":"uint256","name":"prefund","type":"uint256"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"internalType":"uint48","name":"validAfter","type":"uint48"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"address","name":"guarantor","type":"address"},{"internalType":"address","name":"targetToken","type":"address"},{"internalType":"uint256","name":"targetAmount","type":"uint256"}],"internalType":"struct AuthPaymaster.PaymasterContext","name":"context","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"opHash","type":"bytes32"},{"internalType":"uint48","name":"validUntil","type":"uint48"}],"name":"getGuarantorHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"},{"internalType":"uint256","name":"actualUserOpFeePerGas","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"postopGasLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"opHash","type":"bytes32"}],"name":"prefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"opHash","type":"bytes32"},{"internalType":"address","name":"guarantor","type":"address"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"bytes","name":"guarantorSig","type":"bytes"}],"name":"prefundFromGuarantor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"weiAmount","type":"uint256"},{"internalType":"uint256","name":"tokenPrice","type":"uint256"}],"name":"weiToToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawNative","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a060409080825234620001965781816200181f8038038091620000248285620001ac565b833981010312620001965780516001600160a01b038082169290919083820362000196576020809101519383851685036200019657816024916200006833620001e4565b87516301ffc9a760e01b815263122a0e9b60e31b600482015292839182905afa908115620001a2575f9162000161575b50156200011e575060805261c35060015533905f5416036200010757620000bf90620001e4565b516115d890816200024782396080518181816101c30152818161029501528181610347015281816103bd0152818161042801528181610b3101528181610d7901526112790152f35b815163118cdaa760e01b8152336004820152602490fd5b60649085519062461bcd60e51b82526004820152601e60248201527f49456e747279506f696e7420696e74657266616365206d69736d6174636800006044820152fd5b90508181813d83116200019a575b6200017b8183620001ac565b81010312620001965751801515810362000196575f62000098565b5f80fd5b503d6200016f565b86513d5f823e3d90fd5b601f909101601f19168101906001600160401b03821190821017620001d057604052565b634e487b7160e01b5f52604160045260245ffd5b6001600160a01b039081169081156200022e575f548260018060a01b03198216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b604051631e4fbdf760e01b81525f6004820152602490fdfe6040608081526004908136101561001f575b5050361561001d575f80fd5b005b5f915f3560e01c80630396cb6014610d5057806307b18bde14610cd45780631fb4115814610b8e57838163205c287814610b04575080633948d54c14610ae55780633a26ce7114610aa157806344004cc114610a5c57806352b7512c14610750578063715018a6146106f75780637286b324146106b75780637c627b21146105a65780637c986aac146105515780638da5cb5b14610529578063ac96e00f146104fa578063ae86168014610457578063b0d691fe1461041357838163bb9fe6bf146103a0578163c23a5cea1461031957508063c399ec8814610267578063c55f15ea1461024457838163d0e30db0146101b3575063f2fde38b146101235750610011565b346101af5760203660031901126101af5761013c610de7565b9061014561117f565b6001600160a01b039182169283156101995750505f54826bffffffffffffffffffffffff60a01b8216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b80939150600319360112610240577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031691823b1561023b578390602483518095819363b760faf960e01b8352309083015234905af1908115610232575061021f5750f35b61022890610e51565b61022f5780f35b80fd5b513d84823e3d90fd5b505050fd5b5050fd5b505034610263578160031936011261026357602090516305f5e1008152f35b5080fd5b5090346101af57826003193601126101af5780516370a0823160e01b815230928101929092526020826024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa91821561030f5783926102d7575b6020838351908152f35b9091506020813d602011610307575b816102f360209383610e93565b810103126101af576020925051905f6102cd565b3d91506102e6565b81513d85823e3d90fd5b9290503461024057602036600319011261024057610335610de7565b61033d61117f565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116803b1561039c578592836024928651978895869463611d2e7560e11b865216908401525af1908115610232575061021f5750f35b8580fd5b929050346102405782600319360112610240576103bb61117f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031691823b1561023b57815163bb9fe6bf60e01b81529284918491829084905af1908115610232575061021f5750f35b505034610263578160031936011261026357517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50913461022f57602036600319011261022f578235906001600160401b03821161022f57506104976104916101009460e093369101610e24565b906110dd565b8251928151845260208201519060018060a01b0380921660208601528083015190850152606082015165ffffffffffff809116606086015260808301511660808501528060a08301511660a085015260c08201511660c0840152015160e0820152f35b833461022f57606036600319011261022f57610526610517610de7565b339060443590602435906111e0565b80f35b505034610263578160031936011261026357905490516001600160a01b039091168152602090f35b50913461022f578160031936011261022f57506305f5e100823581810293918115918504141715610593575061058c6020926024359061103b565b9051908152f35b601190634e487b7160e01b5f525260245ffd5b50346101af5760803660031901126101af576003813510156101af576024356001600160401b0381116106b3576105e09036908301610e24565b9160443593608083606435956105f4611277565b8101031261039c5761060583610dfd565b9160606106186020860135938601610dfd565b9401359260018060a01b038091169416946001548181029181830414901517156106a057860180961161059357508481111561066a579061065f61052695610664936112fa565b611059565b91611234565b9084829493941061067e575b505050505080f35b61065f61068e92610696966112fa565b913091611307565b5f80808080610676565b601182634e487b7160e01b5f525260245ffd5b8380fd5b50346101af576003199260203685011261022f578135936001600160401b0385116102635761012090853603011261022f575060209261058c9101610f5a565b833461022f578060031936011261022f5761071061117f565b5f80546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b509190346102635760609060031982813601126106b35784356001600160401b039182821161039c5761012082880191833603011261039c57610791611277565b610799611090565b506107a760e48301826113c3565b80603411610a58576107c76107cf926034610104936033190191016110dd565b9301826113c3565b93908415610a45578460011015610a4557600181013560f81c61ff00823560f01c1617908160020180600211610a32578610610a2157810194604192600287019290910360011901808411610a2e5783811115610a2557608211610a2157604386019183915b61083e86610f5a565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000008c52601c52603c8b208b548a51919d6001600160a01b039791881693608084019190821184831017610a0f57508b52808252602099604336910111610a0b576108bb828f6108c4936108da978e8c9701375f60618301526113f5565b9092919261142f565b1614948460c088015116806109ed575b506112e6565b9960a08601928484511692836109aa575b5050505050825181858501511690868501519287519a16868b0152868a01528689015260808801526080875261092087610e78565b608082015191850151906109a3576001905b84519685885288518096890152805b868110610990575085880187015260ff9190911660a09290921b65ffffffffffff60a01b169190911760d09190911b6001600160d01b0319161790840152601f01601f19168201829003019150f35b8981018601518982018901528501610941565b8590610932565b859c5085926109c46109ca936108bb9399979936916111aa565b906113f5565b836109e1575b505050915116965f808080806108eb565b161490505f82816109d0565b610a05906109fa836112e6565b60e08a015191611234565b5f6108d4565b5f80fd5b9050634e487b7160e01b5f525260245ffd5b8880fd5b50818991610835565b8980fd5b634e487b7160e01b8a5260118b5260248afd5b634e487b7160e01b885260328952602488fd5b8780fd5b833461022f57606036600319011261022f57610a76610de7565b6001600160a01b03906024358281168103610a0b5761052692610a9761117f565b6044359216611234565b82843461022f57608036600319011261022f5750610abd610de7565b906064359165ffffffffffff83168303610a0b5760209261058c916044359060243590610efe565b5050346102635781600319360112610263576020906001549051908152f35b92905034610240578060031936011261024057610b1f610de7565b610b2761117f565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116803b1561039c578592836044928651978895869463040b850f60e31b8652169084015260243560248401525af1908115610232575061021f5750f35b508290346102635760c036600319011261026357610baa610de7565b6064359160443591602435916001600160a01b03808616808703610a0b576084359165ffffffffffff831692838103610a0b5760a4356001600160401b038111610cd057876109c488603c8e610c16610c45978f610c0e8e6108bb9a369101610e24565b989096610efe565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000008252601c52209236916111aa565b1603610c8d574211610c5d57506105269495506111e0565b606490602088519162461bcd60e51b8352820152600a6024820152691d985b1a59155b9d1a5b60b21b6044820152fd5b875162461bcd60e51b8152602081840152601b60248201527f696e76616c69642067756172616e746f72207369676e617475726500000000006044820152606490fd5b8a80fd5b5090346101af57806003193601126101af5782808080610cf2610de7565b610cfa61117f565b602435906001600160a01b03165af1610d11610ecf565b5015610d1b578280f35b906020606492519162461bcd60e51b8352820152600f60248201526e1dda5d1a191c985dc819985a5b1959608a1b6044820152fd5b50906020366003190112610a0b5781359163ffffffff8316809303610a0b57610d7761117f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031692833b15610a0b5760245f9284519586938492621cb65b60e51b845283015234905af1908115610dde5750610dd4575080f35b61001d9150610e51565b513d5f823e3d90fd5b600435906001600160a01b0382168203610a0b57565b35906001600160a01b0382168203610a0b57565b359065ffffffffffff82168203610a0b57565b9181601f84011215610a0b578235916001600160401b038311610a0b5760208381860195010111610a0b57565b6001600160401b038111610e6457604052565b634e487b7160e01b5f52604160045260245ffd5b60a081019081106001600160401b03821117610e6457604052565b90601f801991011681019081106001600160401b03821117610e6457604052565b6001600160401b038111610e6457601f01601f191660200190565b3d15610ef9573d90610ee082610eb4565b91610eee6040519384610e93565b82523d5f602084013e565b606090565b9265ffffffffffff919260405193602085019560018060a01b03168652604085015260608401521660808201523060a08201524660c082015260c0815260e081018181106001600160401b03821117610e645760405251902090565b6040610f68818301836113c3565b9081835191823720610f7d60608401846113c3565b90818451918237209260c0610f9560e08301836113c3565b908186519182372091845195602087019460018060a01b03833516865260208301358789015260608801526080870152608081013560a087015260a081013582870152013560e0850152610100908185015283526101208301916001600160401b039184841083851117610e6457838252845190206101408501908152306101608601524661018086015260608452936101a00191821183831017610e64575251902090565b8115611045570490565b634e487b7160e01b5f52601260045260245ffd5b906305f5e1009182810292818404149015171561107c576110799161103b565b90565b634e487b7160e01b5f52601160045260245ffd5b6040519061010082018281106001600160401b03821117610e64576040525f60e0838281528260208201528260408201528260608201528260808201528260a08201528260c08201520152565b919091610100816110ec611090565b9481010312610a0b5761110160208201610dfd565b61110d60608301610e11565b9061111a60808401610e11565b61112660a08501610dfd565b9261113360c08601610dfd565b60e086810135908901526001600160a01b0390811660c089015293841660a088015265ffffffffffff918216608088015216606086015260408084013590860152166020840152358252565b5f546001600160a01b0316330361119257565b60405163118cdaa760e01b8152336004820152602490fd5b9291926111b682610eb4565b916111c46040519384610e93565b829481845281830111610a0b578281602093845f960137010152565b611217827f76ada7d12af4487a408fdfecf13ac56b283c40cece93f89f80ebd786941a86d49495309060018060a01b038516611307565b604080516001600160a01b039290921682526020820192909252a2565b60405163a9059cbb60e01b60208201526001600160a01b0392909216602483015260448083019390935291815261127591611270606483610e93565b611349565b565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036112a957565b60405162461bcd60e51b815260206004820152601560248201527414d95b99195c881b9bdd08115b9d1c9e541bda5b9d605a1b6044820152606490fd5b356001600160a01b0381168103610a0b5790565b9190820391821161107c57565b6040516323b872dd60e01b60208201526001600160a01b0392831660248201529290911660448301526064808301939093529181526112759161127082610e78565b5f806113719260018060a01b03169360208151910182865af161136a610ecf565b908361153f565b805190811515918261139f575b50506113875750565b60249060405190635274afe760e01b82526004820152fd5b8192509060209181010312610a0b5760200151801590811503610a0b575f8061137e565b903590601e1981360301821215610a0b57018035906001600160401b038211610a0b57602001918136038313610a0b57565b81519190604183036114255761141e9250602082015190606060408401519301515f1a906114b2565b9192909190565b50505f9160029190565b600481101561149e5780611441575050565b6001810361145b5760405163f645eedf60e01b8152600490fd5b6002810361147c5760405163fce698f760e01b815260048101839052602490fd5b6003146114865750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b5f52602160045260245ffd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411611534579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15611529575f516001600160a01b0381161561151f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b90611566575080511561155457805190602001fd5b604051630a12f52160e11b8152600490fd5b81511580611599575b611577575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b1561156f56fea26469706673582212204ed8b991baf5901c3a3925780706e240ceaee22f885fa38c3f5e66a4ab75e02664736f6c634300081800330000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032000000000000000000000000c03c506c5118740aad2384c016da3721f1c3062e

Deployed Bytecode

0x6040608081526004908136101561001f575b5050361561001d575f80fd5b005b5f915f3560e01c80630396cb6014610d5057806307b18bde14610cd45780631fb4115814610b8e57838163205c287814610b04575080633948d54c14610ae55780633a26ce7114610aa157806344004cc114610a5c57806352b7512c14610750578063715018a6146106f75780637286b324146106b75780637c627b21146105a65780637c986aac146105515780638da5cb5b14610529578063ac96e00f146104fa578063ae86168014610457578063b0d691fe1461041357838163bb9fe6bf146103a0578163c23a5cea1461031957508063c399ec8814610267578063c55f15ea1461024457838163d0e30db0146101b3575063f2fde38b146101235750610011565b346101af5760203660031901126101af5761013c610de7565b9061014561117f565b6001600160a01b039182169283156101995750505f54826bffffffffffffffffffffffff60a01b8216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b80939150600319360112610240577f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b031691823b1561023b578390602483518095819363b760faf960e01b8352309083015234905af1908115610232575061021f5750f35b61022890610e51565b61022f5780f35b80fd5b513d84823e3d90fd5b505050fd5b5050fd5b505034610263578160031936011261026357602090516305f5e1008152f35b5080fd5b5090346101af57826003193601126101af5780516370a0823160e01b815230928101929092526020826024817f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b03165afa91821561030f5783926102d7575b6020838351908152f35b9091506020813d602011610307575b816102f360209383610e93565b810103126101af576020925051905f6102cd565b3d91506102e6565b81513d85823e3d90fd5b9290503461024057602036600319011261024057610335610de7565b61033d61117f565b6001600160a01b037f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0328116803b1561039c578592836024928651978895869463611d2e7560e11b865216908401525af1908115610232575061021f5750f35b8580fd5b929050346102405782600319360112610240576103bb61117f565b7f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b031691823b1561023b57815163bb9fe6bf60e01b81529284918491829084905af1908115610232575061021f5750f35b505034610263578160031936011261026357517f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b03168152602090f35b50913461022f57602036600319011261022f578235906001600160401b03821161022f57506104976104916101009460e093369101610e24565b906110dd565b8251928151845260208201519060018060a01b0380921660208601528083015190850152606082015165ffffffffffff809116606086015260808301511660808501528060a08301511660a085015260c08201511660c0840152015160e0820152f35b833461022f57606036600319011261022f57610526610517610de7565b339060443590602435906111e0565b80f35b505034610263578160031936011261026357905490516001600160a01b039091168152602090f35b50913461022f578160031936011261022f57506305f5e100823581810293918115918504141715610593575061058c6020926024359061103b565b9051908152f35b601190634e487b7160e01b5f525260245ffd5b50346101af5760803660031901126101af576003813510156101af576024356001600160401b0381116106b3576105e09036908301610e24565b9160443593608083606435956105f4611277565b8101031261039c5761060583610dfd565b9160606106186020860135938601610dfd565b9401359260018060a01b038091169416946001548181029181830414901517156106a057860180961161059357508481111561066a579061065f61052695610664936112fa565b611059565b91611234565b9084829493941061067e575b505050505080f35b61065f61068e92610696966112fa565b913091611307565b5f80808080610676565b601182634e487b7160e01b5f525260245ffd5b8380fd5b50346101af576003199260203685011261022f578135936001600160401b0385116102635761012090853603011261022f575060209261058c9101610f5a565b833461022f578060031936011261022f5761071061117f565b5f80546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b509190346102635760609060031982813601126106b35784356001600160401b039182821161039c5761012082880191833603011261039c57610791611277565b610799611090565b506107a760e48301826113c3565b80603411610a58576107c76107cf926034610104936033190191016110dd565b9301826113c3565b93908415610a45578460011015610a4557600181013560f81c61ff00823560f01c1617908160020180600211610a32578610610a2157810194604192600287019290910360011901808411610a2e5783811115610a2557608211610a2157604386019183915b61083e86610f5a565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000008c52601c52603c8b208b548a51919d6001600160a01b039791881693608084019190821184831017610a0f57508b52808252602099604336910111610a0b576108bb828f6108c4936108da978e8c9701375f60618301526113f5565b9092919261142f565b1614948460c088015116806109ed575b506112e6565b9960a08601928484511692836109aa575b5050505050825181858501511690868501519287519a16868b0152868a01528689015260808801526080875261092087610e78565b608082015191850151906109a3576001905b84519685885288518096890152805b868110610990575085880187015260ff9190911660a09290921b65ffffffffffff60a01b169190911760d09190911b6001600160d01b0319161790840152601f01601f19168201829003019150f35b8981018601518982018901528501610941565b8590610932565b859c5085926109c46109ca936108bb9399979936916111aa565b906113f5565b836109e1575b505050915116965f808080806108eb565b161490505f82816109d0565b610a05906109fa836112e6565b60e08a015191611234565b5f6108d4565b5f80fd5b9050634e487b7160e01b5f525260245ffd5b8880fd5b50818991610835565b8980fd5b634e487b7160e01b8a5260118b5260248afd5b634e487b7160e01b885260328952602488fd5b8780fd5b833461022f57606036600319011261022f57610a76610de7565b6001600160a01b03906024358281168103610a0b5761052692610a9761117f565b6044359216611234565b82843461022f57608036600319011261022f5750610abd610de7565b906064359165ffffffffffff83168303610a0b5760209261058c916044359060243590610efe565b5050346102635781600319360112610263576020906001549051908152f35b92905034610240578060031936011261024057610b1f610de7565b610b2761117f565b6001600160a01b037f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0328116803b1561039c578592836044928651978895869463040b850f60e31b8652169084015260243560248401525af1908115610232575061021f5750f35b508290346102635760c036600319011261026357610baa610de7565b6064359160443591602435916001600160a01b03808616808703610a0b576084359165ffffffffffff831692838103610a0b5760a4356001600160401b038111610cd057876109c488603c8e610c16610c45978f610c0e8e6108bb9a369101610e24565b989096610efe565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000008252601c52209236916111aa565b1603610c8d574211610c5d57506105269495506111e0565b606490602088519162461bcd60e51b8352820152600a6024820152691d985b1a59155b9d1a5b60b21b6044820152fd5b875162461bcd60e51b8152602081840152601b60248201527f696e76616c69642067756172616e746f72207369676e617475726500000000006044820152606490fd5b8a80fd5b5090346101af57806003193601126101af5782808080610cf2610de7565b610cfa61117f565b602435906001600160a01b03165af1610d11610ecf565b5015610d1b578280f35b906020606492519162461bcd60e51b8352820152600f60248201526e1dda5d1a191c985dc819985a5b1959608a1b6044820152fd5b50906020366003190112610a0b5781359163ffffffff8316809303610a0b57610d7761117f565b7f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b031692833b15610a0b5760245f9284519586938492621cb65b60e51b845283015234905af1908115610dde5750610dd4575080f35b61001d9150610e51565b513d5f823e3d90fd5b600435906001600160a01b0382168203610a0b57565b35906001600160a01b0382168203610a0b57565b359065ffffffffffff82168203610a0b57565b9181601f84011215610a0b578235916001600160401b038311610a0b5760208381860195010111610a0b57565b6001600160401b038111610e6457604052565b634e487b7160e01b5f52604160045260245ffd5b60a081019081106001600160401b03821117610e6457604052565b90601f801991011681019081106001600160401b03821117610e6457604052565b6001600160401b038111610e6457601f01601f191660200190565b3d15610ef9573d90610ee082610eb4565b91610eee6040519384610e93565b82523d5f602084013e565b606090565b9265ffffffffffff919260405193602085019560018060a01b03168652604085015260608401521660808201523060a08201524660c082015260c0815260e081018181106001600160401b03821117610e645760405251902090565b6040610f68818301836113c3565b9081835191823720610f7d60608401846113c3565b90818451918237209260c0610f9560e08301836113c3565b908186519182372091845195602087019460018060a01b03833516865260208301358789015260608801526080870152608081013560a087015260a081013582870152013560e0850152610100908185015283526101208301916001600160401b039184841083851117610e6457838252845190206101408501908152306101608601524661018086015260608452936101a00191821183831017610e64575251902090565b8115611045570490565b634e487b7160e01b5f52601260045260245ffd5b906305f5e1009182810292818404149015171561107c576110799161103b565b90565b634e487b7160e01b5f52601160045260245ffd5b6040519061010082018281106001600160401b03821117610e64576040525f60e0838281528260208201528260408201528260608201528260808201528260a08201528260c08201520152565b919091610100816110ec611090565b9481010312610a0b5761110160208201610dfd565b61110d60608301610e11565b9061111a60808401610e11565b61112660a08501610dfd565b9261113360c08601610dfd565b60e086810135908901526001600160a01b0390811660c089015293841660a088015265ffffffffffff918216608088015216606086015260408084013590860152166020840152358252565b5f546001600160a01b0316330361119257565b60405163118cdaa760e01b8152336004820152602490fd5b9291926111b682610eb4565b916111c46040519384610e93565b829481845281830111610a0b578281602093845f960137010152565b611217827f76ada7d12af4487a408fdfecf13ac56b283c40cece93f89f80ebd786941a86d49495309060018060a01b038516611307565b604080516001600160a01b039290921682526020820192909252a2565b60405163a9059cbb60e01b60208201526001600160a01b0392909216602483015260448083019390935291815261127591611270606483610e93565b611349565b565b7f0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da0326001600160a01b031633036112a957565b60405162461bcd60e51b815260206004820152601560248201527414d95b99195c881b9bdd08115b9d1c9e541bda5b9d605a1b6044820152606490fd5b356001600160a01b0381168103610a0b5790565b9190820391821161107c57565b6040516323b872dd60e01b60208201526001600160a01b0392831660248201529290911660448301526064808301939093529181526112759161127082610e78565b5f806113719260018060a01b03169360208151910182865af161136a610ecf565b908361153f565b805190811515918261139f575b50506113875750565b60249060405190635274afe760e01b82526004820152fd5b8192509060209181010312610a0b5760200151801590811503610a0b575f8061137e565b903590601e1981360301821215610a0b57018035906001600160401b038211610a0b57602001918136038313610a0b57565b81519190604183036114255761141e9250602082015190606060408401519301515f1a906114b2565b9192909190565b50505f9160029190565b600481101561149e5780611441575050565b6001810361145b5760405163f645eedf60e01b8152600490fd5b6002810361147c5760405163fce698f760e01b815260048101839052602490fd5b6003146114865750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b5f52602160045260245ffd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411611534579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15611529575f516001600160a01b0381161561151f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b90611566575080511561155457805190602001fd5b604051630a12f52160e11b8152600490fd5b81511580611599575b611577575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b1561156f56fea26469706673582212204ed8b991baf5901c3a3925780706e240ceaee22f885fa38c3f5e66a4ab75e02664736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032000000000000000000000000c03c506c5118740aad2384c016da3721f1c3062e

-----Decoded View---------------
Arg [0] : _entryPoint (address): 0x0000000071727De22E5E9d8BAf0edAc6f37da032
Arg [1] : _owner (address): 0xc03c506c5118740AAD2384c016DA3721F1c3062E

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032
Arg [1] : 000000000000000000000000c03c506c5118740aad2384c016da3721f1c3062e


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.