Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Loading...
Loading
Contract Name:
SafeDecimalMath
Compiler Version
v0.5.16+commit.9c3226ce
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity)
/**
*Submitted for verification at sepolia-optimism.etherscan.io on 2023-12-11
*/
/*
____ __ __ __ _
/ __/__ __ ___ / /_ / / ___ / /_ (_)__ __
_\ \ / // // _ \/ __// _ \/ -_)/ __// / \ \ /
/___/ \_, //_//_/\__//_//_/\__/ \__//_/ /_\_\
/___/
* Synthetix: SafeDecimalMath.sol
*
* Latest source (may be newer): https://github.com/Synthetixio/synthetix/blob/master/contracts/SafeDecimalMath.sol
* Docs: https://docs.synthetix.io/contracts/SafeDecimalMath
*
* Contract Dependencies: (none)
* Libraries:
* - SafeDecimalMath
* - SafeMath
*
* MIT License
* ===========
*
* Copyright (c) 2023 Synthetix
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
*/
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
// Libraries
// https://docs.synthetix.io/contracts/source/libraries/safedecimalmath
library SafeDecimalMath {
using SafeMath for uint;
/* Number of decimal places in the representations. */
uint8 public constant decimals = 18;
uint8 public constant highPrecisionDecimals = 27;
/* The number representing 1.0. */
uint public constant UNIT = 10**uint(decimals);
/* The number representing 1.0 for higher fidelity numbers. */
uint public constant PRECISE_UNIT = 10**uint(highPrecisionDecimals);
uint private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR = 10**uint(highPrecisionDecimals - decimals);
/**
* @return Provides an interface to UNIT.
*/
function unit() external pure returns (uint) {
return UNIT;
}
/**
* @return Provides an interface to PRECISE_UNIT.
*/
function preciseUnit() external pure returns (uint) {
return PRECISE_UNIT;
}
/**
* @return The result of multiplying x and y, interpreting the operands as fixed-point
* decimals.
*
* @dev A unit factor is divided out after the product of x and y is evaluated,
* so that product must be less than 2**256. As this is an integer division,
* the internal division always rounds down. This helps save on gas. Rounding
* is more expensive on gas.
*/
function multiplyDecimal(uint x, uint y) internal pure returns (uint) {
/* Divide by UNIT to remove the extra factor introduced by the product. */
return x.mul(y) / UNIT;
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of the specified precision unit.
*
* @dev The operands should be in the form of a the specified unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function _multiplyDecimalRound(
uint x,
uint y,
uint precisionUnit
) private pure returns (uint) {
/* Divide by UNIT to remove the extra factor introduced by the product. */
uint quotientTimesTen = x.mul(y) / (precisionUnit / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of a precise unit.
*
* @dev The operands should be in the precise unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function multiplyDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) {
return _multiplyDecimalRound(x, y, PRECISE_UNIT);
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of a standard unit.
*
* @dev The operands should be in the standard unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function multiplyDecimalRound(uint x, uint y) internal pure returns (uint) {
return _multiplyDecimalRound(x, y, UNIT);
}
/**
* @return The result of safely dividing x and y. The return value is a high
* precision decimal.
*
* @dev y is divided after the product of x and the standard precision unit
* is evaluated, so the product of x and UNIT must be less than 2**256. As
* this is an integer division, the result is always rounded down.
* This helps save on gas. Rounding is more expensive on gas.
*/
function divideDecimal(uint x, uint y) internal pure returns (uint) {
/* Reintroduce the UNIT factor that will be divided out by y. */
return x.mul(UNIT).div(y);
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* decimal in the precision unit specified in the parameter.
*
* @dev y is divided after the product of x and the specified precision unit
* is evaluated, so the product of x and the specified precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function _divideDecimalRound(
uint x,
uint y,
uint precisionUnit
) private pure returns (uint) {
uint resultTimesTen = x.mul(precisionUnit * 10).div(y);
if (resultTimesTen % 10 >= 5) {
resultTimesTen += 10;
}
return resultTimesTen / 10;
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* standard precision decimal.
*
* @dev y is divided after the product of x and the standard precision unit
* is evaluated, so the product of x and the standard precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function divideDecimalRound(uint x, uint y) internal pure returns (uint) {
return _divideDecimalRound(x, y, UNIT);
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* high precision decimal.
*
* @dev y is divided after the product of x and the high precision unit
* is evaluated, so the product of x and the high precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function divideDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) {
return _divideDecimalRound(x, y, PRECISE_UNIT);
}
/**
* @dev Convert a standard decimal representation to a high precision one.
*/
function decimalToPreciseDecimal(uint i) internal pure returns (uint) {
return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR);
}
/**
* @dev Convert a high precision decimal to a standard decimal representation.
*/
function preciseDecimalToDecimal(uint i) internal pure returns (uint) {
uint quotientTimesTen = i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
// Computes `a - b`, setting the value to 0 if b > a.
function floorsub(uint a, uint b) internal pure returns (uint) {
return b >= a ? 0 : a - b;
}
/* ---------- Utilities ---------- */
/*
* Absolute value of the input, returned as a signed number.
*/
function signedAbs(int x) internal pure returns (int) {
return x < 0 ? -x : x;
}
/*
* Absolute value of the input, returned as an unsigned number.
*/
function abs(int x) internal pure returns (uint) {
return uint(signedAbs(x));
}
}Contract ABI
API[{"constant":true,"inputs":[],"name":"PRECISE_UNIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"UNIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"highPrecisionDecimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"preciseUnit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"pure","type":"function"},{"constant":true,"inputs":[],"name":"unit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"pure","type":"function"}]Contract Creation Code
61012d610026600b82828239805160001a60731461001957fe5b30600052607381538281f3fe730000000000000000000000000000000000000000301460806040526004361060655760003560e01c8063313ce56714606a578063864029e7146086578063907af6c014609e5780639d8e21771460a4578063d5e5e6e61460aa578063def4419d1460b0575b600080fd5b607060b6565b6040805160ff9092168252519081900360200190f35b608c60bb565b60408051918252519081900360200190f35b608c60cb565b608c60d7565b608c60e3565b607060f3565b601281565b6b033b2e3c9fd0803ce800000081565b670de0b6b3a764000090565b670de0b6b3a764000081565b6b033b2e3c9fd0803ce800000090565b601b8156fea265627a7a723158207ee27ee798e7e3d99c26a8e4e077d39c2193b6a47879f23930f56f931085ed7f64736f6c63430005100032
Deployed Bytecode
0x732ad7ccaac0eeb396c3a5fc2b73a885435688c0d5301460806040526004361060655760003560e01c8063313ce56714606a578063864029e7146086578063907af6c014609e5780639d8e21771460a4578063d5e5e6e61460aa578063def4419d1460b0575b600080fd5b607060b6565b6040805160ff9092168252519081900360200190f35b608c60bb565b60408051918252519081900360200190f35b608c60cb565b608c60d7565b608c60e3565b607060f3565b601281565b6b033b2e3c9fd0803ce800000081565b670de0b6b3a764000090565b670de0b6b3a764000081565b6b033b2e3c9fd0803ce800000090565b601b8156fea265627a7a723158207ee27ee798e7e3d99c26a8e4e077d39c2193b6a47879f23930f56f931085ed7f64736f6c63430005100032
Library Used
SafeDecimalMath : 0x2ad7ccaac0eeb396c3a5fc2b73a885435688c0d5SystemSettingsLib : 0x343b5efcbf331957d3f4236eb16c338d7256f62dSignedSafeDecimalMath : 0xc7dcc0929881530d3386de51d9ffdd35b8009c6eExchangeSettlementLib : 0x3f60ffaef1ebd84e3c2d0c9c0e12388365d5df12
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.